Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wei-Bing Zhang, Shuang-Di Ruan, Shu-Juan Zhu, Hong-Ping Xiao* and Sai-Ya Ye

School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.005 Å R factor = 0.038 wR factor = 0.101 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di-µ-2-sulfonatobenzoato-bis[aqua(1,10-phenanthroline)copper(II)] trihydrate

In the title compound, $[Cu_2(C_7H_4O_5S)_2(C_{12}H_8N_2)_2(H_2O)_2]$ -3H₂O, each copper(II) atom is coordinated by two N atoms from one 1,10-phenanthroline molecule, two carboxylate O atoms from two 2-sulfonatobenzoato dianions and one aqua O atom in a distorted square pyramidal geometry. The 2sulfonatobenzoato dianions function as μ_2 -bridging ligands in the formation of a dinuclear complex. Intermolecular hydrogen-bond interactions link the dinuclear units into a two-dimensional network structure.

Comment

Sulfobenzoic acids (obs) such as 4-sulfobenzoic acid (Fan *et al.*, 2004; Zhang, Zhu & Xiao, 2005) and 2-sulfobenzoic acid (o-H₂sb) (Li & Yang, 2004; Xiao, 2005; Xiao, Li & Hu, 2005; Xiao, Shi & Cheng, 2005; Su *et al.*, 2005), are suitable ligands for the preparation of metal-organic coordination polymers owing to their diverse structural motifs. As part of our ongoing investigation on the coordination properties of sulfobenzoic acids, we have used 2-sulfobenzoic acid, copper(II) and 1,10-phenanthroline (phen) in a mixed ethanol and water solvent to give a mononuclear complex [CuCl(phen)₂]·(o-Hsb)·H₂O (Zhang, Wang, Chen & Xiao, 2005). The title complex, [Cu₂(H₂O)₂(phen)₂(o-sb)₂]·3H₂O (I), was obtained by using Cu(CH₃CO₂)₂·H₂O instead of CuCl₂·2H₂O and with aqueous *N*,*N*-dimethylformamide as solvent.

In (I), each Cu(II) atom is in a distorted square pyramidal geometry defined by one aqua O atom, two O atoms belonging to two 2-sulfonatobenzoato dianions and two N atoms from one 1,10-phenanthroline molecule (Fig. 1 and Table 1). The *o*-sb dianions function as μ_2 -bridging ligands between the two copper(II) atoms to form a dinuclear complex having a Cu \cdots Cu distance of 3.175 (2) Å. In the reported complex,

© 2006 International Union of Crystallography All rights reserved Received 16 March 2006 Accepted 24 March 2006

metal-organic papers

Figure 1

The structure of (I), with the atom numbering, showing displacement ellipsoids at the 30% probability level. C-bound H atoms have been omitted.

Figure 2

The two-dimensional hydrogen-bonded (dashed lines) network in (I). H atoms not involved in the interactions shown have been omitted.

 $[CuCl(phen)_2] \cdot (o-Hsb) \cdot H_2O$, the anion does not coordinate to the Cu atom (Zhang, Wang, Chen & Xiao, 2005).

The structure shows a short interplanar distance of 3.56 Å between two 1,10-phenanthroline rings in the dinuclear complex, an indication of π - π stacking. Intermolecular O-H···O hydrogen bonds are found in the crystal structure (Table 2). The interactions link the dinuclear units into a two-dimensional network structure and enhance its stability (Fig. 2).

Experimental

An aqueous solution (10 ml) containing $Cu(CH_3CO_2)_2 \cdot H_2O$ (0.30 mmol, 0.059 g) was added slowly to a solution (10 ml) of *N*,*N*dimethylformamide containing 1,10-phenanthroline (0.30 mmol, 0.054 g) and 2-sulfobenzoic acid (0.30 mmol, 0.061 g). Blue crystals suitable for X-ray analysis were obtained on standing the solution at room temperature for two weeks.

Crystal data

 $\begin{bmatrix} Cu_2(C_7H_4O_5S)_2(C_{12}H_8N_2)_{2^-} \\ (H_2O)_2 \end{bmatrix} \cdot 3H_2O \\ M_r = 977.89 \\ \text{Monoclinic, } P2_1/c \\ a = 15.7402 \ (8) \\ \mathring{A} \\ b = 11.0625 \ (6) \\ \mathring{A} \\ c = 22.8274 \ (12) \\ \mathring{A} \\ \beta = 97.334 \ (1)^{\circ} \\ V = 3942.3 \ (4) \\ \mathring{A}^3 \\ Z = 4 \\ \end{bmatrix}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scan Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.719, T_{max} = 0.843$ 20723 measured reflections

Refinement

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.9755 (18)	Cu2-O2	1.9404 (18)
Cu1-O6	1.9420 (18)	Cu2-O7	1.9943 (18)
Cu1-O11	2.183 (2)	Cu2-O12	2.134 (2)
Cu1-N1	2.010 (2)	Cu2-N3	2.012 (2)
Cu1-N2	1.995 (2)	Cu2-N4	1.995 (2)
01 Cu1 011	80.55 (8)	$O_{2}^{2} C_{2}^{2} O_{2}^{2}$	88 26 (8)
06-Cu1-011	91 73 (8)	$02 - Cu^2 - 01^2$	92.33 (9)
06-Cu1-O11	88.92 (8)	$07 - Cu^2 - 012$	90.83 (8)
O6-Cu1-N2	172.14 (9)	O2-Cu2-N4	173.68 (10)
O1-Cu1-N2	94.42 (8)	O2-Cu2-N3	92.39 (9)
O6-Cu1-N1	90.91 (9)	O7-Cu2-N3	161.02 (8)
O1-Cu1-N1	164.40 (8)	O7-Cu2-N4	95.80 (9)
N1-Cu1-O11	105.88 (8)	N4-Cu2-N3	82.13 (10)
N2-Cu1-N1	81.87 (8)	N3-Cu2-O12	108.08 (8)
N2-Cu1-O11	96.02 (8)	N4-Cu2-O12	92.37 (10)

 $D_x = 1.648 \text{ Mg m}^{-3}$

Cell parameters from 6431

 $0.28 \times 0.22 \times 0.14 \text{ mm}$

7158 independent reflections

5901 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 2.4-25.4^{\circ}$ $\mu = 1.26 \text{ mm}^{-1}$

T = 298 (2) K

Prism, blue

 $R_{\rm int} = 0.026$

 $\theta_{\max} = 25.3^{\circ}$ $h = -18 \rightarrow 18$

 $k = -10 \rightarrow 13$

 $l = -24 \rightarrow 27$

Table 2	
Hydrogen-bond geometry (Å	, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O15-H15B\cdots O10^{i}$	0.85	2.37	3.115 (5)	146
$O15-H15A\cdots O8^{ii}$	0.85	1.94	2.763 (4)	162
$O14-H14A\cdots O9$	0.85	2.20	3.018 (4)	161
$O14-H14B\cdots O4^{iii}$	0.85	2.01	2.846 (3)	169
$O13-H13B\cdots O9^{i}$	0.85	2.05	2.857 (4)	159
O13−H13A···O4	0.85	2.29	3.090 (3)	157
O12−H12B···O14	0.85	1.90	2.697 (3)	155
$O12-H12A\cdots O3^{iv}$	0.85	1.88	2.700 (3)	161
O11−H11 <i>B</i> ···O13	0.85	1.95	2.800 (3)	174
O11−H11A···O15	0.85	1.89	2.733 (4)	171

Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) -x + 1, -y + 1, -z + 1.

All H atoms were positioned geometrically (C–H = 0.93 Å or O– H = 0.85 Å) and allowed to ride on their parent atoms, with U_{iso} (H) values equal to $1.2U_{eq}$ (C) or $1.5U_{eq}$ (O).

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support from Zhejiang Provincial Natural Science Foundation (grant No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

References

- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
- Fan, S. R., Xiao, H. P., Zhang, L. P., Cai, G. Q. & Zhu, L. G. (2004). Acta Cryst. E60, m1970–m1972.
- Li, X. H. & Yang, S. Z. (2004). Acta Cryst. C60, m423-m25.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Su, W., Bi, W. H., Li, X. & Cao, R. (2005). Acta Cryst. C61, m16-m18.
- Xiao, H. P. (2005). Acta Cryst. E61, m942-m944.
- Xiao, H. P., Li, X. H. & Hu, M. L. (2005). Acta Cryst. E61, m506-m508.
- Xiao, H. P., Shi, Q. & Cheng, Y. Q. (2005). Acta Cryst. E61, m907-m909.
- Zhang, L. P., Zhu, L. G. & Xiao, H. P. (2005). Acta Cryst. E61, m860-m862.
- Zhang, W. B., Wang, J. G., Chen, H. X. & Xiao, H. P. (2005). Acta Cryst. E61, m2559–m2560.